Зависимость толщины скин слоя от частоты. Скин эффект. Способы подавления скин эффекта

Скин-эффект

Скин-эффект (от англ. skin - кожа, оболочка), поверхностный эффект, ослабевания электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате этого эффекта, например, переменный ток высокой частоты или переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода, при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в причины эффекта.

Причины эффекта.

Скин-эффект обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают вихревые токи, в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т.е. к затуханию волны.

Вихревые токи, токи Фуко, замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина Вихревого тока тем больше, чем быстрее меняется магнитный поток./

Чем выше частота n электромагнитного поля и больше магнитная проницаемость m проводника, тем сильнее (в соответствии с Максвелла уравнениями) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т.о., чем больше n, m и s, тем сильнее затухание, т.е. резче проявляется Скин-эффект.

Максвелла уравнения, фундаментальные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольной среде. Максвелла уравнения сформулированы Дж.К. Максвеллом в 60-х годах 19 века на основе обобщения эмпирических законов электрических и магнитных явлений. Опираясь на эти законы и развивая плодотворную идею М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляются посредством электромагнитного поля, Максвелл создал теорию электромагнитных процессов, математически выражаемую Максвелла уравнения Современная форма Максвелла уравнения дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом. Максвелла уравнения связывают величины, характеризующие электромагнитное поле, с его источниками, то есть с распределением в пространстве электрических зарядов и токов. В пустоте электромагнитное поле характеризуется двумя векторными величинами, зависящими от пространственных координат и времени: напряжённостью электрического поля Е и магнитной индукцией В. Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение которых в пространстве задаётся плотностью заряда r (зарядом в единице объёма) и плотностью тока j (зарядом, переносимым в единицу времени через единичную площадку, перпендикулярную направлению движения зарядов). Для описания электромагнитных процессов в материальной среде (в веществе), кроме векторов Е и В, вводятся вспомогательные векторные величины, зависящие от состояния и свойств среды: электрическая индукция D и напряжённость магнитного поля Н. Максвелла уравнения позволяют определить основные характеристики поля (Е, В, D и Н) в каждой точке пространства в любой момент времени, если известны источники поля j и r как функции координат и времени. Максвелла уравнения могут быть записаны в интегральной или в дифференциальной форме (ниже они даны в абсолютной системе единиц Гаусса; см. СГС система единиц). Максвелла уравнения в интегральной форме определяют по заданным зарядам и токам не сами векторы поля Е, В, D, Н в отдельных точках пространства, а некоторые интегральные величины, зависящие от распределения этих характеристик поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности. Первое Максвелла уравнения является обобщением на переменные поля эмпирического Ампера закона о возбуждении магнитного поля электрическими токами. Максвелл высказал гипотезу, что магнитное поле порождается не только токами, текущими в проводниках, но и переменными электрическими полями в диэлектриках или вакууме. Величина, пропорциональная скорости изменения электрического поля во времени, была названа Максвеллом током смещения. Ток смещения возбуждает магнитное поле по тому же закону, что и ток проводимости (позднее это было подтверждено экспериментально). Полный ток, равный сумме тока проводимости и тока смещения, всегда является замкнутым.

Первое М. у. имеет вид:

/

В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закон:

Коэффициент затухания, m0 - магнитная постоянная На глубине х = d = 1/a амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (s = 580 ксим/см; m = 1) s = 9,4 мм, в стали (a = 100 ксим/см, (m = 1000) d = 0,74 мм. При увеличении частоты до 0,5 Мгц d уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с d, тем слабее проявляется С.-э.

Магнитная постоянная, коэффициент пропорциональности m0, появляющийся в ряде формул магнетизма при записи их в рационализованной форме (в Международной системе единиц). Так, индукция В магнитного поля и его напряжённость Н связаны в вакууме соотношением

В = m0Н,

где m0 = 4p×10-7 гн/м» 1,26×10-6 гн/м.)).

Для проводников при сильно выраженном Скин-эффекте, когда радиус кривизны сечения провода значительно больше d и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Zs (поверхностного импеданса). Его определяют как отношение комплексной амплитуды падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины.

Комплексная амплитуда, представление амплитуды А и фазы y гармонического колебания х = Acos (wt + y) с помощью комплексного числа =Aexp (ij)=Acosj + iAsinj. При этом гармоническое колебание описывается выражением

х = Re [(expiwt)],

где Re - вещественная часть комплексного числа, стоящего в квадратных скобках. К. а. обычно применяются при расчете линейных электрических цепей (с линейной зависимостью тока от напряжений), содержащих активные и реактивные элементы. Если на такую цепь действует гармоническая эдс частоты w, то использование К. а. тока и напряжения позволяет перейти от дифференциальных уравнений к алгебраическим. Связь между К. а. тока I и напряжения U для активного сопротивления R определяется законом Ома: / =· R. Для индуктивности L эта связь имеет вид I = - а для ёмкости С: I=iwCU. Таким образом, величины iwL и L/iwC играют роли индуктивного и ёмкостного сопротивлений./

Комплексное сопротивление на единицу длины проводника:

где R0 - активное сопротивление проводника, определяющее мощность потерь в нём, X0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, lc - периметр поперечного сечения скин-слоя, w = 2pn; при этом R0 = X0. При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.

/! Волновое сопротивление передающих электрических линий, отношение напряжения к току в любой точке линии, по которой распространяются электромагнитные волны. В. с. представляет собой сопротивление, которое оказывает линия бегущей волне напряжения. В бесконечно длинной линии или линии конечной длины, но нагруженной на сопротивление, равное В. с., не происходит отражения электромагнитных волн и образования стоячих волн. В этом случае линия передаёт в нагрузку практически всю энергию от генератора (без потерь). В. с. равно:

/

В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины d скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах Скин-эфект приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном Скин-эффекте становятся неравноценными с точки зрения их вклада в электрический ток; при l >> d основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. об., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального Скин-эффекта несколько иные. Поле в скин-слое затухает не экспоненциально (R0/X0=).

В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и Скин-эффект снова становится нормальным. Т. об., на низких и очень высоких частотах Скин-эффект всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и d могут иметь место нормальный и аномальный Скин-эффект. Всё сказанное справедливо, пока частота со меньше плазменной: w < w0 «(4pne2/m) 1/2 (n - концентрация свободных электронов, е - заряд, m - масса электрона).

Борьба с эффектом.

Скин-эффект часто нежелателен. В проводах переменный ток при сильном Скин-эффект протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном Скин-эффекте проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние Скин-эффекта ослабляет уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков.

Магнитодиэлектрики, магнитные материалы, представляющие собой связанную в единый конгломерат смесь ферромагнитного порошка и связки - диэлектрика (например, бакелита, полистирола, резины); в макрообъёмах обладают высоким электрическим сопротивлением, зависящим от количества и типа связки. М. могут быть как магнитно-твёрдыми материалами, так и магнитно-мягкими материалами. Магнитно-мягкие М. вырабатывают в основном из тонких порошков карбонильного железа, молибденового пермаллоя и альсифера с различной связкой. Магнитно-мягкие М. применяют для изготовления сердечников катушек индуктивности, фильтров, дросселей, радиотехнических броневых сердечников, работающих при частотах 104-108 гц./

Также, с увеличением частоты переменного тока скин-эффект проявляется всё более явно, что заставляет учитывать его при конструировании и расчётах электрических схем, работающих с переменным и импульсным током. Например, вместо обычных медных проводов могут применяться медные провода, покрытые тонким слоем серебра. Серебро обладает наибольшей проводимостью среди всех металлов, и тонкий его слой, в котором благодаря скин-эффекту и протекает бо́льшая часть тока, оказывает сильное влияние на активное сопротивление проводника. Скин-эффект значительно влияет на характеристики колебательных контуров, такие как добротность. В связи с тем, что ток высокой частоты течёт по тонкому поверхностному слою проводника, активное сопротивление проводника значительно возрастает, что приводит к быстрому затуханию колебаний высокой частоты. Для борьбы со скин-эффектом применяют проводники различного сечения: плоские (в виде лент), трубчатые (полые внутри), наносят на поверхность проводника слой металла с более низким удельным сопротивлением. Например, в ВЧ аппаратуре используют посеребрённые медные контуры, в высоковольтных линиях электропередач применяют провод в медной либо алюминиевой оболочке со стальным сердечником, в высокомощных генераторах переменного тока обмотка изготавливается из трубок, через которые пропускается жидкий водород для охлаждения. Также с целью подавления скин-эффекта используют систему из нескольких переплетённых и изолированных проводов - литцендрат. Все указанные методы борьбы со скин-эффектом малоэффективны для сверхвысокочастотного оборудования. В этом случае применяют колебательные контура особой формы: объёмные резонаторы и специфические линии передач Применение эффекта

Применение эффекта.

С др. стороны, Скин-эффект находит применение в практике. На Скин-эффекте основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 Гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На Скин-эффект основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Индукционная нагревательная установка, электротермическая установка для нагрева металлических заготовок или деталей с применением индукционного нагрева./

Также на скин-эффекте основано действие взрывомагнитных генераторов (ВМГ), взрывомагнитных генераторов частоты (ВМГЧ) и в частности ударно-волновых излучателей (УВИ).

Глубина слоя проводника, в котором напряженность электрического поля уменьшается в e раз, называется глубиной скин-слоя. Зависимость глубины скин-слоя от частоты для медного проводника приведена в таблице. - волноводы. поверхностном слое.

Формула для расчёта глубины скин-слоя в металле (приближённая).

Здесь ε0 = 8,85419*10-12 Ф/м - абсолютная диэлектрическая проницаемость вакуума, ρ - удельное сопротивление, c - скорость света, μm - относительная магнитная проницаемость (близка к единице для пара- и диамагнетиков - меди, серебра, и т.п.), ω = 2π * f. Все величины выражены в системе СИ.

Более простая формула для расчета

ρ - удельное сопротивление, μm - относительная магнитная проницаемость, f - частота.

Всем известно - от плазменного шара током не бьет. Хотя напряжение в десятки тысяч вольт проходит через человека… Почему???

Если подать на плазменный шар очень высокое напряжение - более 100KV - разряды начнут выходить из стеклянной колбы. Опять же, эти искры можно «потрогать», только Вы ничего не почувствуете.

Снимем шар с подставки.

И, наконец, отключим саму подставку от катушки Тесла.

Во всех 4 случаях через человека проходит ток в 100-200KV, но почему же он не оказывает никакого действия? Сила тока маленькая? Нет, включив в цепь >катушка Тесла -> провод -> искра -> человек< лампу накаливания (если в ней будет хотя бы один виток волоска - опыт не получится), можно заставить волосок нагреться.

Ответ прост: высокочастотный ток проходит только по поверхности проводника (коже), вызывая лишь нагревание. Но не стоит думать, что разряд от катушки Тесла полностью безопасен по 2 причинам

) некоторые искры могут иметь низкую частоту

) в месте входа искры в тело будет ожог.

Для избежания ожогов необходимо держать в руке небольшой металлический НЕ изолированный предмет (например, отвертку, кусочек фольги или провода).

Во время экспериментов была использована 450W катушку Тесла, включенная на средней мощности, чтобы не допустить повреждение WEB камеры, которая вела съемку.

СКИН система представляет собой надёжный и безопасный комплекс, предназначенный для обогрева трубопроводов, имеющих различную длину, при подводной, подземной и надземной прокладке, а также, в зонах, обладающих повышенной взрывоопасностью.

СКИН система является единственно возможным методом обогрева для трубопроводов без сопроводительной сети, длина которых может составлять до 30 тысяч метров;

·система сконструирована с высокими показателями надёжности и прочности;

·СКИН эффект даёт возможность обогревать магистрали любой протяжённости;

·можно применять в зонах повышенной взрывоопасности;

·элементы для нагрева имеют показатель тепловыделения до 120 Ватт на метр;

·СКИН система работает при температуре до 200 градусов;

·имеется разрешение на применение в зонах повышенной взрывоопасности от Федеральной службы по экологическому, технологическому и атомному надзору и сертификат соответствия ГОСТ Р;

·на внешних частях элементов, которые выделяют тепло, нет потенциала, они не нуждаются в электроизоляции, так как заземлены.

Назначение

СКИН система (Индукционно-резистивная система) позволяет поддерживать заданные температуры трубопроводов, предохраняет их от замерзания, даёт возможность производить разогрев магистралей любой протяжённости.

СКИН система является уникальной, так как она одна может осуществлять обогрев трубопроводного плеча при длине магистрали до 30 тысяч метров с подачей питания без сети сопровождения. СКИН эффект позволяет получить экономические выгодный обогрев магистралей любой длины при наличии сети сопровождения.

Принцип действия

электромагнитный скин эффект тесла

Токи трубы и проводника направлены друг к другу, что вызывает эффект близости и поверхностный эффект. Ток в трубе проходит по внутреннему слою, а напряжения на её поверхности нет. Проводник производится из алюминия или меди (немагнитные материалы), поэтому существенного поверхностного эффекта нет, а переменный ток протекает по проводниковому сечению. Главный элемент, который выделяет тепло в СКИН системе - труба, которая берёт на себя около 80 процентов системной мощности.

Преимущества

Большая длина обогреваемого участка трубопровода.

Небольшое системное сопротивление на метр длины в сочетании с большим напряжением электропитания даёт возможность питать до 30 тысяч метров плечей обогрева.

Запитка происходит с одного конца. По своей сути конструкционное решение системы позволяет осуществлять питание участка для обогрева с одного конца.

Электробезопасность. Внешняя часть элемента для нагрева обладает нулевым показателем потенциала относительно земли и заземлена.

Хороший тепловой контакт. Элемент для нагрева (металлический) крепят (специальными крепёжными деталями) или приваривают к трубопроводу. Чтобы улучшить контакт (тепловой) применяют паста с хорошей теплопроводностью.

Простота монтажа. На тепловыделяющих элементах отсутствует внешняя теплоизоляция, что обуславливает невозможность её повреждения при проведении монтажных работ.

Повышенная надёжность. Труба из стали (низкоуглеродистой) гарантирует защиту проводника от различных повреждений и механическую прочность, что немаловажно для магистралей, которые проложены под водой и землёй.

Тепловыделение

Рабочий температурный интервал составляет от -50 градусов до +200 градусов. Электрическое питание варьируется от 50 Герц до 5 киловатт.

Конструкционные элементы включают в себя:

Элемент, выделяющий тепло - стальная труба с диаметром 20-60 мм и толщиной стенки не менее 3 мм.

Проводник. В качестве токонесущего проводника используется спецпроводник, противостоящий механическим нагрузкам при проведении монтажных работ, тепловым нагрузкам до 200 градусов и высокому напряжению до 5 кВт.

Защита против коррозии - если необходимо заказчику, можно применить эпоксидное покрытие.

Управление

Для увеличения эффективности, система ИРСН оборудуется специальным устройством управления, которое понижает мощность обогрева тогда, когда температура наружного воздуха увеличивается. Такое устройство управления гарантирует тщательный контроль над системным состоянием и даёт возможность обнаружить аварийные обстоятельства, что немаловажно.

Пример обогрева теплоизолированного трубопровода тремя нагревательными элементами СКИН-системы с суммарной мощностью 130 Вт/м.

Диаметр трубы 530 мм, t окр. Возд. = - 20°

Схема электропитания участка трубопровода, обогреваемого СКИН-системой

Трубопроводный участок с обогревом СКИН-системой (схема электрического питания). Система электрического питания включает в себя трансформаторную подстанцию комплектного типа (КТП), с ячейками (распределительными) низкой и высокой стороны, особый трансформатор (симметрирующий), систему управления и контроля. Комплектную трансформаторную подстанцию устанавливают в обогреваемом герметизированном контейнере.

Список литературы

1)Нетушил А.В., Поливанов К.М., Основы электротехники, т. 3, М., 1956;

2)Поливанов К.М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975;

)Нейман Л.Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949.

)Калашников С.Г., Электричество, М., 1956 (Общий курс физики, т. 2).

)Толмасский И.С., Металлы и сплавы для магнитных сердечников, М., 1971.

Свойства быстропеременных токов

Определение 1

Токами высокой частоты считают токи, которые имею частоту выше, чем $10000 Гц$. Для этих токов не выполняются условия квазистационарности. В процессе протекания такого тока по проводнику, в проводнике появляются вихревые токи, которые порождаются изменениями магнитного поля с высокой скоростью.

Изменения магнитного поля в проводнике происходят такие, что на его оси вихревой ток имеем направление встречное к основному току, а у поверхности проводника течение этого тока совпадает с направлением основного тока. Значит, ток высокой частоты имеет непостоянную плотность по поперечному сечению. Плотность тока в центре сечения проводника почти равна нулю. Она увеличивается при движении в направлении к наружной поверхности. При очень высокой частоте ток течет по тонкому наружному слою проводника.

Сейчас токи высокой частоты широко применяются. Высокочастотные плавильные печи применяют для быстрого прогрева металлических тел. С помощью высокочастотных токов проводят закаливание стальных деталей. Объект на короткое время размещают внутри катушки с током высокой частоты. Поверхностный слой детали разогревается вихревыми токами, ее внутренность при этом остается холодной. Деталь вынимают из катушки, внутренняя часть быстро отнимает тепло у поверхностного слоя, поверхность быстро охлаждается и закаляется. Глубину прогрева регулируют временем выдержки детали в катушке и частотой тока. После такой процедуры поверхность детали становится твердой и прочной, внутри металл сохраняет упругость и пластичность.

Скин --эффект

Определение 2

Постоянный ток по поперечному сечению проводника распределяется равномерно. У переменного тока из-за индукционного взаимодействия разных элементов тока проходит перераспределение плотности тока по поперечному сечению проводника. Явление, при котором ток преимущественно сосредотачивается в поверхностном слое проводника, называется скин-эффектом .

Пусть мы имеем цилиндрический проводник, по которому течет ток. Вокруг проводника с током образуется магнитное поле. Силовые линии этого поля -- концентрические окружности, центр которых лежит на оси проводника. Если силу тока увеличить, то повысится индукция магнитного поля, но форма силовых линий не изменится. Соответственно, производная $\frac{\partial \overrightarrow{B}}{\partial t}$ направлена по касательной к линии индукции магнитного поля, линии производной также -- окружности, которые совпадают с силовыми линиями. Мы знаем из закона электромагнитной индукции, что:

Вектор напряженности индукционного поля в областях расположенных ближе к оси проводника имеет направление противоположное вектору напряженности электрического поля, которое создает ток, в дальних областях направления этих векторов совпадают. В результате плотность тока уменьшается около оси и увеличивается ближе к поверхности проводника, то есть появляется скин-эффект.

В металлах в виду их высокой проводимости током смещения можно пренебречь в сравнении с током проводимости. Из-за чего проникновение магнитного поля в металл аналогично процессу диффузии в математическом отношении. За основу возьмем уравнение (1) и уравнение (2):

Используем закон Ома:

приравняем правые части выражений (2) и (3) и продифференцируем полученное выражение, в результате имеем:

Или учитывая формулу (1):

Используем известные соотношения:

окончательно получим:

Если ток течет по однородному бесконечному проводнику, который занимает полупространство y$>$0 вдоль оси X, причем поверхность проводника плоская, и можно записать:

В таком случае уравнение (7) преобразуется к виду:

Можно предположить, что:

Подставив выражение (11) в уравнение (10) получим:

Решением уравнения (12) является функция:

где $\alpha =\sqrt{\frac{\omega \sigma {\mu }_0\mu }{2}}$. Возьмем действительную часть выражения (13) и перейдем к плотности тока, используя закон Ома, получим:

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. На расстоянии $\triangle =\frac{1}{\alpha }\ \ от\ поверхности\ $она становится в e раз меньше. Почти весь ток находится в $\triangle $ слое, который называют толщиной скин -- слоя. Толщина скин - слоя равна:

При высокой частоте тока толщина скин - слоя весьма мала.

Пример 1

Задание: Во сколько раз уменьшится толщина скин -- слоя меди, если ${\omega }_1={10}^4с^{-1}$, а ${\omega }_2={10}^6с^{-1}$.

Решение:

Толщина скин -- слоя проводника рассчитывается по формуле:

\[\triangle =\sqrt{\frac{2}{\sigma \mu {\mu }_0\omega }}\left(1.1\right).\]

Если дважды записать выражение (1.1) для разных частот тока, то получим:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{\omega }_2}{{\omega }_1}}\left(1.2\right).\]

Проведем вычисления:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{10}^6}{{10}^4}}=10.\]

Ответ: Толщина уменьшится в 10 раз.

Пример 2

Задание: Почему при высокой частоте тока можно убрать проводящий материал из цилиндрической области внутри проводника и оставить только проводящую оболочку?

Решение:

Как было показано в предыдущем примере, с увеличением частоты тока, глубина слоя в котором распространяется ток, становится очень небольшой. То есть ток течет лишь в малой части поперечного сечения проводника около его поверхности (скин - эффект). Следовательно, ничего не изменится, если убрать проводящий материал из цилиндрической области внутри проводника и оставить только цилиндрическую оболочку толщиной скин -- слоя. Если проводник толстый, а частота его невелика, то ток течет по всему поперечному сечению и только немного ослабевает к оси провода. Так, при технической частоте в $50 Гц$ скин -- эффект в обычных проводниках выражается очень слабо.

1. Поверхностный эффект ……………………………………………………..2

2. Электрический поверхностный эффект на примере шины прямоугольного сечения …………………………………………………….3

3. Расчёт комплексного сопротивления шины ……………………………...9

4. Магнитный поверхностный эффект ………………………………………11

5. Расчёт комплексной мощности в листе, обтекаемом синусоидальным магнитным потоком …………………………………...15

6. Анализ выражений для удельной комплексной мощности ……………17

7. Приближённые способы расчёта комплексной мощности в стальном листе, обтекаемом магнитным потоком.………………….....18

8. Электрический поверхностный эффект в проводнике круглого сечения …………………………………………………………….21

9. Эффект близости ……………………………………………………………..26

10. Комплексное сопротивление шины при наличии эффекта близости ………………………………………………………………………30

11. Параметры однофазного шинопровода …………………………………33

12. Электромагнитные поля и параметры шин трёхфазного шинопровода ………………………………………………………………..34

13. Расчёт поля в шинах С, В, А ……………………………………………...36

14. Расчёт комплексного сопротивления шины ……………………………38

15. Эквивалентные схемы замещения трёхфазного шинопровода при симметричной системе токов ………………………………………...40

16. Электромагнитное поле в оболочке кабеля …………………………….45

17. Комплексное сопротивление оболочки ………………………………….47

18. Список литературы ………………………………………………………...49

Поверхностный эффект

Экспериментально установлено и теоретически подтверждено, что переменный электрический ток (в том числе и синусоидаль­ный) в отличие от постоянного неравномерно распределяется по сечению токопровода. При этом всегда существует тенденция вы­теснения тока из внутренней части проводника в периферийную, т.е. плотность тока в проводнике возрастает по мере перемещения из глубины к поверхности провода. Это явление называют электрическим поверхностным эффектом. Его можно объяснить следующим образом.

Ранее указывалось, что вектор Пойнтинга имеет нормальную к боковой поверхности проводника составляющую, и это свидетельствует о проникновении в проводник энергии из окружающего про­странства через эту поверхность. Одновременно отмечалось, что электромагнитные волны распространяются в направлении вектора Пойнтинга и в проводящей среде затухают в том же направлении. Но если это так, то в проводнике, обтекаемом током, плотность тока, а также электрическая и магнитная напряженности у поверхности должны быть больше, чем в глубине. Электрическому поверхностному эффекту может быть дано и другое более наглядное объяснение. Если токопровод обтекается синусоидальным током, то его внутренние части сцеплены с большим магнитным потоком по сравнению с периферийными, и поэтому в них в соответствии с законом электромагнитной индукции будут наводиться большие электродвижущие силы, препятствующие изменению тока и находящиеся практически в противофазе с вектором плотности тока. По этой причине можно считать, что во внутренних частях токопровода суммарные электрические напряженности и плотности тока связанные между собой законом Ома () , будут иметь меньшие значения, чем в периферийных.

Если частота тока и параметры таковы, что глубина проникновения волны много меньше поперечного сечения проводника (Δ« d ), то ток в проводнике будет сосредоточен лишь в тонком поверхностном слое, толщина которого практически определяется глубиной проникновения волны. Такой поверхностный эффект называют ярко выраженным. Вытеснение тока приводит к увеличению активного сопротивления токопровода по сравнению с его значением при постоянном токе. Именно по этим причинам в высокочастотных установках индуктор выполняется в виде медной труб­ки, внутри которой для охлаждения пропускается жидкость.

Если глубина проникновения волны соизмерима с габаритными размерами, то проводник называют прозрачным и считают, что по сечению этого проводника ток распределяется практически равномерно.

Если в проводящем ферромагнетике замыкается переменный магнитный поток, то он также вытесняется на поверхность магнитопровода, в поверхностном слое возрастают магнитная индукция и напряженность, а это влечет за собой увеличение плотности вихревого тока и джоулевых потерь.

При магнитном поверхностном эффекте также вводится в рассмотрение глубина проникновения волны, и при условии, что Δ« d , эффект считается ярко выраженным. Явление магнитного поверхностного эффекта широко используется в электротермии, однако в электрических машинах, трансформаторах и других подобных установках проявление этого эффекта крайне нежелательно.

Электрический поверхностный эффект на примере шины прямоугольного сечения

На рис. 1 изображена шина прямоугольного сечения, обтекаемая током I. Поле в шине удовлетворяет уравнению Гельмгольца

Внутри шины существуют электромагнитное поле и ток проводимости. За пределами шины (удельная проводимость (γ=0) ток проводимости (δ=0) отсутствует, но электрическое и магнитное поля существуют. Так как внутреннее и внешнее электромагнитные поля взаимосвязаны, то при решении задачи о расчете поля внутри шины необходимо знать законы распределения поля и за ее пределами.

Таким образом, при строгом подходе нужно решать задачу о расчете поля во всем пространстве - внутри и за пределами шины.

Так как эта задача очень сложна для точного аналитического реше­ния, сформулируем такие условия и допущения, при которых задачу о поверхностном эффекте в шине можно будет решить приближенно с хорошей точностью. Сначала рассмотрим поле в круглом проводе (рис. 2).

Магнитные линии представляют собой концентрические окружности. В данном примере поток, обусловленный током в проводе, разделяется на две составляющие - внутренний и внешний. Это свойство круглого провода используется в инженерной практике при определении внутренней индуктивности провода. Как видно из рис. 3, при квадратном сечении провода такое четкое разграничение потоков сделать нельзя, так как контур сечения уже не является силовой линией.

Определим, какое влияние оказывает геометрия шины (h /2 a ) на распределение поля в ее объеме. Из рис. 4 следует, что по мере увеличения относительных размеров (h /2а) силовые линии внутри шины начинают принимать очертания, приближающиеся к форме внешнего контура шины. Если же отношение h /2 a » 1 (рис. 5), то практически во всем объеме шины вектор магнитной напряженности становится направленным вдоль большей боковой поверхности шины, т. с. в сторону координаты у.

Если теперь пренебречь краевыми эффектами, то для шины при h » 2 a возможно решение задачи в системе координат (х, у, z ) в предпо­ложении, что

,
,

,
.

Рис.4 Рис. 5

Поставим задачу: рассчитать распределе­ние поля Е и Н в объеме прямоугольной шины (рис. ПО) и вычислить ее комплекс­ное сопротивление синусоидальному току, если шина h/2a » 1 обтекается током I с частотой ω .

Рис. 6 Рис. 7

Параметры среды: μ , γ . Приня­тое допущение Ė=Ė x (z ) приводит к урав­нению Гельмгольца (индекс х в дальнейшем опустим) относительно вектора электричес­кой напряженности

, (5.34)

где
.

Решением уравнения (5.34) является совокупность экспоненциальных функций

, (5.35)

. (5-36)

Запишем общее решение для , используя второе уравнение Максвелла
. Поскольку в рассматриваемом случае
, то

. (5.37)

С учётом (5.35)

. (5.38)

Далее отыщем постоянные интегрирования С 1 и С 2 . Поскольку исследуемое поле обладает симметрией
, следовательно, из (5.35) имеем

Очевидно, что последнее равенство справедливо, если С 1 2 =С/2 .

Тогда с учётом условия симметрии выражения (5.35) и (5.38) будут иметь вид соответственно

, (5.39)

. (5.40)

Постоянная интегрирования С пропорциональна заданному в шине току I .

Выделим некоторый участок dS = hdz (рис. 7). Тогда

(5.41)

J n


.

Отсюда находим
. (5.42)

В итоге окончательное решение для Ė имеет вид:

. (5.43)

Подстановка (5.42) в (5.40) с уче­том (5.34) позволяет получить реше­ние для магнитной напряженности:

. (5.44)

Таким образом, (5.43) и (5.44) есть окончательные выражены для электрической и магнитной напряженностей и в объем шины.

Интерес представляет качественный анализ распределения плотности тока в объеме шины (рис.8). В соответствии с законом Ома
для плотности тока в шине имеем

.

Картина распределения δ(z ) , очевидно, будет зависеть от ко­эффициента распространения
.

Если на низких частотах па­раметр а/∆ мал (ра << 1) , то при малом аргументе shpz ≈1 , Shpa pa и тогда

Таким образом при этих условиях ток равномерно распределяется по шине и поверхностный эффект не проявляется. По мере роста частоты картина изменяет­ся, поскольку с ростом па­раметра (ра) увеличивает­ся неравномерность рас­пределения тока по сече­нию шины.

Рассмотрим распространение электромагнитной волны в проводящей среде. Для этого воспользуемся уравнениями Максвелла (45.9) и возьмем ротор от второго из них. Принимая и используя первое и четвертое уравнения, а также векторное тождество и закон Ома получим уравнение для магнитного поля:

Отсюда следует дисперсионное уравнение

Рассмотрим эволюцию начального состояния поля (с заданным Решая (87.2) относительно и, получим

При магнитное поле затухает с характерным временем . В среде с хорошей проводимостью имеется два характерных времени затухания

Обратим внимание, что для быстрого затухания а для медленного о.

Аналогичным образом можно получить уравнение для электрического поля в среде, которое имеет вид

где - плотность свободных зарядов. Если их нет, то электрическое-поле затухает так же, как и магнитное. При наличии зарядов электрическое поле можно представить как , где Тогда уравнение (87.5) распадается на два, причем выражение для совпадает с (87.1), поскольку Еывр Формула для от принимает вид

поскольку Уравнение (87.6) эквивалентно рассмотренному ранее уравнению релаксации зарядов в среде (23.1), в чем легко убедиться, взяв дивергенцию от его левой части. Поэтому, как и заряды, потенциальная составляющая поля всегда затухает с характерным временем (87.4).

Рассмотрим теперь другую задачу: на границу проводящей среды падает электромагнитная волна заданной частоты и. Каково затухание волны в пространстве? Оно определяется мнимой частью. к из (87.2):

где - характерная глубина проникновения переменного электромагнитного поля в проводящую среду, называемая толщиной скин-слоя (от англ. skin - кожа).

В среде с плохой проводимостью

где имеет обычный вид. В обратном предельном случае

а фазовая скорость

Для промышленной частоты 50 Гц ( км) толщина скин-слоя в меди см, а в железе мм, см/с. В радиодиапазоне мм; (для меди).

Найдем теперь соотношение между электрическим и магнитным полями затухающей волны Проще всего его получить из первого уравнения (45.9): или, так как

Поскольку для хороших проводников (медь) а то в радиодиапазоне так что речь идет о затухании магнитного поля. Такое большое значение связано с отражением волны от поверхности хорошего проводника (см. § 72), при котором электрические поля падающей и отраженной волны почти компенсируют друг друга. Соотношение (87.10) определяет, таким образом, так называемые граничные условия Леонтовича при отражении волны от проводника с конечной проводимостью для компонент поля, касательных к поверхности.

Задача 1. Вычислить сопротивление проводника с учетом скин-эффекта Из закона Ома находим полный ток в скин-слое:

Действительная часть этого выражения определяет омическое сопротивление проводника (на единицу длины и единицу поперечного размера): мнимая - его внутреннюю индуктивность:

Вычислим теперь потери энергии в проводнике. Для этого найдем модуль вектора Пойнтинга на поверхности проводника. Получим прежде всего выражение для векторного произведения комплексных векторов: где - угол между ними, направленный от вектора а к Представляя получим Таким образом,

Это выражение имеет очень простой физический смысл: поток энергии равен плотности энергии в проводнике вблизи его границы, умноженной на скорость движения волны внутри проводника

Этот же результат можно получить и непосредственным интегрированием джоулевых потерь внутри проводника:

Наиболее распространенное применение скин-эффекта - экранирование от переменного магнитного поля. Последнее может быть вредно как само по себе, так и благодаря связанному с ним вихревому электрическому полю, создающему различные электрические наводки. Экранирование осуществляется путем окружения защищаемой аппаратуры достаточно толстым проводящим экраном. Практическая трудность связана с тем, что обычно экран не может быть полностью замкнутым. Необходимы, например, различные отверстия для подвода питания аппаратуры, наблюдения за ней и т. д. Интересно отметить, что такие экраны ослабляют поле сильнее, чем по простому экспоненциальному закону (см. задачи 2, 3).

Задача 2. Найти коэффициент экранирования цилиндрического экрана радиуса толщина стенок которого много меньше скин-слоя. Магнитное поле параллельно оси цилиндра.

Ввиду условия поля внутри стенок, а значит, и плотность тока можно считать однородными. Тогда ток в экране (на единицу его длины) можно определить просто по закону Фарадея:

где - поле внутри экрана. Закон сохранения циркуляции магнитного поля дает где - внешнее поле. Для коэффициента экранирования получаем

Здесь, кроме малого множителя который возникает при разложении экспоненты появляется большой множитель . Такой же множитель появляется и при сильном скин-эффекте . Физическая причина дополнительного ослабления поля в экранируемом пространстве связана с тем, что «хвост» потока в сплошном металле распределяется на большую площадь . В результате для коэффициента экранирования получается следующая простая оценка:

Другим важным применением скин-эффекта является формирование магнитного поля нужной конфигурации, которая повторяет форму проводящей поверхности с точностью до толщины скин-слоя.

Скин-эффект приводит к своеобразному взаимодействию переменного тока с проводящей стенкой (рис. XII.5). Так как силовые линии не проникают в глубь проводника, то при достаточно малой толщине скин-слоя нормальная составляющая магнитного поля на поверхности близка к нулю. Поэтому конфигурация магнитного

Рис. XII.5. Поля импульсного пучка электронов вблизи проводящей поверхности.

поля тока вблизи проводящей плоской стенки эквивалентна полю двух токов разного направления. Один из них называется обычно изображением тока по аналогии с электростатическим изображением заряда. Таким образом, ток «отталкивается» от проводящей поверхности.

Если ток создается пучком заряженных частиц, то кроме взаимодействия тока со стенкой, есть еще взаимодействие заряда, которое приводит к притяжению пучка стенкой. Последнее всегда сильнее, так что в результате получается притяжение к стенке, равное на единицу длины пучка (сравни (30.4))

Если скомпенсировать электрический заряд пучка, то результирующая сила изменит направление; такой пучок будет отталкиваться от стенки (рис. XII.6). На этом явлении основан интересный метод фокусировки пучка в металлической трубе, остроумно названный ФУКОсировкой. Так как пучок отталкивается трубой «со всех сторон», он устойчиво движется вдоль оси трубы. Такая фокусировка позволяет транспортировать достаточно интенсивный пучок по изогнутой трубе и, в частности, удерживать его в кольцевой трубе.

Рис. XII.6. Отражение пучка электронов от металлической пластинки.

Название этой самофокусировки связано с тем, что токи, наводимые переменным полем в проводнике, известны как токи Фуко, по имени французского ученого, впервые описавшего это явление.

Задача 3. Оценить магнитное поле вблизи центра тонкого проводящего диска радиуса и толщины помещенного в однородное переменное магнитное поле, если

Токи Фуко плотностью возбуждаемые в диске, создают на его оси поле (см. (28.4))

В свою очередь, ток в кольце донцентрнческом с диском,

Сопротивление кольца, -полное поле в плоскости кольца. Подчеркнем, что здесь учтена индуктивность кольца, так как ЭДС индукции вычисляется через сумму внешнего поля и поля токов Фуко (ср. (48.4) и задачу 2).

Аналитически система уравнений не решается. Для оценки можно принять где - поле в центре диска. Тогда

(сравни задачу 2 и комментарий к ней).

Рассмотрим теперь нестационарный скин-эффект, когда зависимость магнитного поля от времени на границе проводника не является гармонической. Если по-прежнему пренебречь токами смещения по сравнению с токами проводимости, то из (87.1) приходим к уравнению диффузионного типа:

Такой же вид имеет и уравнение теплопроводности (см. (87.37) ниже). Коэффициент диффузии магнитного поля

Простейший случай настационарного скин-эффекта соответствует экспоненциальному росту внешнего поля . Такая зависимость получается из гармонической формальной заменой: Тогда для одномерной задачи решение диффузионного уравнения (87.14) сразу получается из (87.9) такой же

Эффективная толщина скин-слоя

не зависит от времени, как и в стационарном случае. Решение (87.16) можно интерпретировать как диффузионное распространение фронта магнитного поля вглубь проводника

со скоростью

Последнее неравенство есть условие применимости диффузионного приближения (87.14), т. е. пренебрежение токами смещения. Например, для меди с диффузионная скорость

Рассмотрим теперь более сложную задачу о нестационарном скин-эффекте при быстром («мгновенном») включении гармонического поля:

Частоту поля а также толщину стационарного скин-слоя полагаем равными единице. Фурье-спектр поля (87.20)

содержит низкие частоты которые и будут определять значительно более сильное проникновение поля в проводник по сравнению со стационарным скин-эффектом на частоте . Пренебрегая последним (ср. спектры (87.21) и (78.8)) и считая характерную область частот (см. ниже), можем написать решение в виде фурье-интеграла:

Мы использовали здесь выражение для стационарного скин-эффекта на частоте фурье-гармоники со в виде

Легко проверить, что это выражение справедливо как для так и для

Вычисление интеграла (87.22) производится с помощью замены переменой: и приведения показателя экспоненты к полному квадрату (ср. (85.6)). В результате получаем

где новая переменная . Поскольку внешнее поле (87.20) можно представить в виде выражение

описывает нестационарный скин-эффект при включении внешнего поля и в точности совпадает с результатом работы , полученным другим методом.

При фиксированной глубине функция достигает максимального значения

в момент времени Таким образом, максимальное поле убывает с глубиной значительно медленнее, чем при стационарном скин-эффекте. Отметим, что в заданный момент времени поле внутри проводника имеет максимум при равный

В принятом приближении все полученные выражения справедливы только для (см. 87.23). Поэтому решение (87.24) не удовлетворяет граничному условию где нужно учитывать также отброшенный стационарный вклад в скин-эффект, который сответствует частотам в полном спектре (78.8) внешнего поля (87.20).

Скин-эффект (от англ. skin - кожа, оболочка)

поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. С.-э. обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают Вихревые токи , в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

Чем выше частота ν электромагнитного поля и больше магнитная проницаемость μ проводника, тем сильнее (в соответствии с Максвелла уравнения ми) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т. о., чем больше ν, μ и σ, тем сильнее затухание, т. е. резче проявляется С.-э.

В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:

Коэффициент затухания, μ 0 -Магнитная постоянная . На глубине х = δ = 1/α амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (σ = 580 ксим/см; μ = 1) σ = 9,4 мм, в стали (α = 100 ксим/см, = 1000) δ = 0,74 мм. При увеличении частоты до 0,5 Мгц δ уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с δ, тем слабее проявляется С.-э.

Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше δ и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды (См. Комплексная амплитуда) падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:

где R 0 - активное сопротивление проводника, определяющее мощность потерь в нём, X 0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, l c - периметр поперечного сечения скин-слоя, ω = 2πν; при этом R 0 = X 0 . При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением (См. Волновое сопротивление) проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.

В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины δ скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l >> δ основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально (R 0 /X 0 =

В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и С.-э. снова становится нормальным. Т. о., на низких и очень высоких частотах С.-э. всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и δ могут иметь место нормальный и аномальный С.-э. Всё сказанное справедливо, пока частота со меньше плазменной: ω ne2/m ) 1/2 (n - концентрация свободных электронов, е - заряд, m - масса электрона) (относительно более высоких частот см. ст. Металлооптика).

С.-э. часто нежелателен. В проводах переменный ток при сильном С.-э. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном С.-э. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние С.-э. ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков (См. Магнитодиэлектрики).

С др. стороны, С.-э. находит применение в практике. На С.-э. основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На С.-э. основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Лит.: Нетушил А. В., Поливанов К. М., Основы электротехники, т. 3, М., 1956; Поливанов К. М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975; Нейман Л. Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949. См. также лит. при ст. Металлы .

И. Б. Негневицкий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Скин-эффект" в других словарях:

    - (поверхностный эффект) эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется… … Википедия

    - (от англ. skin кожа, оболочка) (поверхностный эффект), затухание эл. магн. волн по мере их проникновения в глубь проводящей среды, в результате к рого, напр., перем. ток по сечению проводника или перем. магн. поток по сечению магнитопровода… … Физическая энциклопедия

    - (англ. skin кожа, оболочка + аффект) поверхностный эффект 1) явление протекания тока высокой частоты не по всему сечению сплошного проводника, а преимущ. по его поверхностному слою (электрический скин эффект); примен., напр., при поверхностной… … Словарь иностранных слов русского языка

    - (от англ. skin кожа, оболочка) (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течёт в основном в тонком поверхностном слое… … Энциклопедический словарь

    - (от англ. skin кожа оболочка), (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течет в основном в тонком поверхностном слое… … Большой Энциклопедический словарь

    Скин эффект, скин эффекта … Орфографический словарь-справочник

    Сущ., кол во синонимов: 1 эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Похожие статьи

© 2024 alc56.ru. Компьютерные подсказки - Alc74.